Cohomology of a loop Grassmannian and the principal nilpotent

نویسنده

  • VICTOR GINZBURG
چکیده

Given a complex projective algebraic variety, write H•(X,C) for its cohomology with complex coefficients and IH •(X,C) for its Intersection cohomology. We first show that under some fairly general conditions the canonical map H•(X,C) → IH •(X,C) is injective. Now let Gr := G((z))/G[[z]] be the loop Grassmannian for a complex semisimple group G, and let X be the closure of a G[[z]]-orbit in Gr. We prove, using the general result above, a conjecture of D. Peterson describing the cohomology algebra H•(X,C) in terms of the centralizer of the principal nilpotent in the Langlands dual of Lie (G). In the last section we give a new ”topological” proof of Kostant’s theorem about the polynomial algebra of a semisimple Lie algebra, based on purity of the equivariant intersection cohomology groups of G[[z]]-orbits on Gr.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Loop Grassmannian cohomology, the principal nilpotent and Kostant theorem

Given a complex projective algebraic variety, write H•(X,C) for its cohomology with complex coefficients and IH •(X,C) for its Intersection cohomology. We first show that under some fairly general conditions the canonical map H•(X,C) → IH •(X,C) is injective. Now let Gr := G((z))/G[[z]] be the loop Grassmannian for a complex semisimple group G, and let X be the closure of a G[[z]]-orbit in Gr. ...

متن کامل

On continuous cohomology of locally compact Abelian groups and bilinear maps

Let $A$ be an abelian topological group and $B$ a trivial topological $A$-module. In this paper we define the second bilinear cohomology with a trivial coefficient. We show that every abelian group can be embedded in a central extension of abelian groups with bilinear cocycle. Also we show that in the category of locally compact abelian groups a central extension with a continuous section can b...

متن کامل

Characteristic Cycles for the Loop Grassmannian and Nilpotent Orbits

which is a linear combination of closures of conormal bundles to submanifolds of X. Intuitively, the microlocal multiplicities cα( ) measure the singularity of at α. In settings related to representation theory, a group G acts on X, is G-equivariant, and the microlocal multiplicities play a significant but only partially understood role in representation theory (see [Ro], [SV], [ABV], and [KaSa...

متن کامل

QUANTUM COHOMOLOGY AND THE k-SCHUR BASIS

We prove that structure constants related to Hecke algebras at roots of unity are special cases of k-Littlewood-Richardson coefficients associated to a product of k-Schur functions. As a consequence, both the 3point Gromov-Witten invariants appearing in the quantum cohomology of the Grassmannian, and the fusion coefficients for the WZW conformal field theories associated to ŝu( ) are shown to b...

متن کامل

Superfield approach to BRST cohomology

In the framework of superfield formalism, we discuss some aspects of the cohomological features of a two (1 + 1)-dimensional free Abelian gauge theory described by a Becchi-Rouet-Stora-Tyutin (BRST) invariant Lagrangian density. We demonstrate that the conserved and nilpotent (anti-)BRSTand (anti-)co-BRST charges are the generators of translations along the Grassmannian directions of the four (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998